-
南庄三中冼瑞冰认识三角形(2)
普通类 -
- 支持
- 批判
- 提问
- 解释
- 补充
- 删除
-
-
南庄三中冼瑞冰教学设计 2.doc
-
默认段落标题(请修改)...
南庄三中 冼瑞冰
一、 教学目标:
(1)知识与技能:让学生认识等腰三角形,会按边对三角形分类并掌握三边关系,并能运用三边关系解决生活中的实际问题. 结合具体实例,进一步掌握三角形三条边的关系.
(2)过程与方法:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.
(3)情感与态度:学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.
二、 教学设计:
第一环节 现实情境引入
活动内容:
活动一
观察下面的三角形,并把它们的标号填入相应的椭圆框内:
(2)在上面的三角形中各自的边长有什么关系?有等腰三角形吗?
活动目的:本活动在于渗透分类的数学思想,使学生在操作的过程中感悟分类的方法,做到不重复不遗漏.
实际教学效果:学生能够根据上节课的内容,将所给的三角形按角进行分类,在复习上节课知识的基础上,类比想到第二问,体会如何按边来分类,教学过程中渗透类比的数学思想。(应该删除或者在课后补上)
第二环节 认识等腰三角形及三角形按边分类
活动内容:
1.等腰三角形和等边三角形的定义
有两边相等的三角形叫等腰三角形;
有三边相等的三角形叫等边三角形;
问题一:从定义上你能看出等腰三角形与等边三角形的关系吗?(学生讨论给出)
2.三角形按边分类:
活动目的:通过对等腰三角形的认识,引出等腰三角形的定义以及三角形按边分类,进一步体现数学分类的思想。第三环节 探索三角形三边关系
活动内容:
1、小组活动:
问:是不是任意三条线段都能够组成三角形?三条线段满足什么条件才能组成一个三角形?
2、插入微课,自行学习
3、准备5根木棒长分别为3cm,4cm,5cm,6cm,9cm,任意取出3根首尾相接搭三角形,并填表:
选择的长度
能否搭出三角形
示意图
能
不能
3cm,4cm,5cm
√
4、小组活动三:
(1)任意画一个三角形,量出它的三边长度,并填空:
a=______;b=_______;c=______。
(2)计算并比较:
a+b____c; b+c____a;c+a____b。
a-b____c;b-c____a;c-a____b。
(3)通过以上的计算你认为三角形的三边存在怎样的关系?
整理得到: 三角形任意两边之和大于第三边,任意两边之差小于第三边。
例如在△ABC中,根据两点之间线段最短,我们有点A到点B,C的距离之和要大于线段BC的长,即 AB+AC>BC。
5、问题二
活动目的:通过设计两个活动,让学生经历“三角形任意两边之和大于第三边,任意两边之差小于第三边。”这一结论得出的过程,并通过练习的设计进一步加深对这一结论的理解。
实际教学效果:学生能在活动中合作学习,共同探讨三角形的三边关系,经历活动的过程,积累活动经验,加深对结论的理解。
第四环节 基础巩固
活动内容:
1.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆。学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?
2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?实际摆一摆,验证你的结论。
(1)3cm, 4cm, 5cm ; (2)8cm, 7cm, 15cm; (3 ) 13cm, 12cm, 20cm; (4)5cm, 5cm, 11cm
3.现有长度分别为1cm,2cm,3cm,4cm,5cm的五条线段,从其中选三条线段为边可以构成_______个不同的三角形。
4.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为 。若第三边为偶数,那么三角形的周长________。
5.一个等腰三角形的两边长分别为25和12,则第三边长为__________。
6.若等腰 △ ABC周长为26,AB=6 ,求它的腰长.
解:
7.有四个汽车停车场,位于如图所示的四边形ABCD的四个顶点,现在要建立一个汽车维修站,你能利用“三角形任意两边之和大于第三边”在四边形ABCD的内部找一点P,使点P到A,B,C,D四点的距离之和最小吗?
(何加银修改)
第五环节 课堂小结
活动内容:
学生自我谈收获体会,说说学完本节课的困惑。教师做最终总结并指出注意事项。
(让学生畅所欲言,谈收获体会,教师给予鼓励。主要是让学生熟记新知能应用新知解决问题。培养学生概括总结的能力。)
实际教学效果:学生对本节内容归纳为以下两点:
1.了解了三角形的概念及表示方法;
2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.
注意事项为:判断a,b,c三条线段能否组成一个三角形,
应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可。当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边。
第六环节 布置作业
课本习题4.2
三、教学设计反思
本节设计的成功之处为:一是创设情境引入等腰和等边三角形及三角形按边分类;二是在验证三边和差时充分的调动了学生的积极性,在实践中总结了结论。学生能印象深刻,为理论的应用奠定基础。同时通过观察、操作、想象、推理、交流等活动,发展了学生的空间观念,推理能力和有条理地语言表达能力;三是注重了理论联系实际,适时的对学生进行德育教育。培养了学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣.
今后注意改进的方面,应该留给学生充分的独立思考的时间,不要一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。平时要多注重学生几何语言的培养,多让学生在生活中发现数学学习数学。
微课教学设计
学校
南庄三中
课名
三角形----认识三角形
教师
冼瑞冰
学科(版本)
北师大版
章节
第四章第二节
学时
1课时
年级
七年级
使用节点
课中
微课嵌入点
第三环节 探索三角形三边关系
选该内容进行微课探索的原因
1、这是一节几何课堂,通过微课能够生动把每个环节显示出来,从而让学生易于理解
2、教学目标是:
(1)要学生掌握三角形三边关系,并能运用三边关系解决生活中的实际问题. 结合具体实例,进一步掌握三角形三条边的关系。
(2)通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力。
3、选取这个环节切入微课,目的让学生易于理解,突出这知识点重要性,学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣。
微课类型
1、解决重点:理解和掌握“三角形任意两边的和大于第三边”的性质;
解决难点:自主探索三角形的三边关系,引导发现“三角形任意两边之
和大于第三边”的性质
2、探究型
微课嵌入目的
通过微课能够生动把每个环节显示出来,从而让学生易于理解
选取策略
本节课我们主要来学习三角形三边的关系,同学们要通过自己的实际动手操作理解并掌握三角形的两边之和大于第三边,两边之差小于第三边,能够判断哪些线段可以围成三角形,可以解决相关的实际问题。
微课效益分析
通过微课引入,让学生生动,易于理解,若一下子过了还可以重复去看,加深巩固。
预设的问题是
1、学生看完微课之后有些知识点没及时理解,老师要及时点拨。/2、在练习检测中错误较多的同学,可继续学习微课,进一步巩固知识的掌握。
怎么设计本堂课
1、学生要掌握三角形三边关系,并能运用三边关系解决生活中的实际问题. 结合具体实例,通过微课能够生动把每个环节显示出来,从而让学生易于理解
2、通过知识点掌握在微课学习中有针对性的体现,学完后还有疑问可继续学习微课。
引导语如何设置
本环节我们一起通过微课学习,掌握当中知识点,并应用其中。
-
-
- 标签:
- 认识
- 南庄
- 三角形
- 三中
-
学习元评论 (0条)
聪明如你,不妨在这 发表你的看法与心得 ~